UH
MIN-Fakultat
a3 Universitait Hamburg Fachbereich Informatik

DER FORSCHUNG | DER LEHRE | DER BILDUNG Arbeitsbereich SAV/BV (KOGS)

Image Processing 1 (IP1)
Bildverarbeitung 1

Lecture 5 — Perspective Transformations
and Interpolation

Winter Semester 2014/15

Slides: Prof. Bernd Neumann
Slightly revised by: Dr. Benjamin Seppke & Prof. Siegfried Stiehl



IP1 — Lecture 5: Perspective Transformations and Interpolation

Perspective Projection Transformation

Where does a point of a scene appear in an image?
X

y ?

Z

Transformation in 3 steps:

1. scene coordinates => camera coordinates
2. projection of camera coordinates into image plane

3. camera coordinates => image coordinates

Perspective projection equations are essential for Computer Graphics. For
Image Understanding we will need the inverse: What are possible scene
coordinates of a point visible in the image? This will follow later.




IP1 — Lecture 5: Perspective Transformations and Interpolation

Perspective Projection in Independent
Coordinate Systems

It is often useful to describe real-world points, camera geometry and image
points in separate coordinate systems.

The formal description of projection involves transformations between these
coordinate systems.

» 4 Camera coordinates Image coordinates Scene (world) coordinates
X
Scene point v=| y
_______ ®
____________ z
Optical _
center o ’
X
xl’ 2 "
X — ! ’ " X
Vv = = = P
4 yl’ vp yP vp » ”
> Z ) y
z, 3 p
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3D Coordinate Transformation |

The new coordinate system is specified by a translation and rotation

with respect to the old coordinate system:

. . v i
V=R (V- Vo) o Optical center
R Rotation matrix
R =
R may be decomposed into 3 rotations
about the coordinate axes:
R=R, Ry R,
If rotations are performed in the above order: R, =
1) vy = rotation angle about z-axis it
2) B =rotation angle about (new) y-axis ,pan”
3) a = rotation angle about (new) x-axis ,nick” R -

Note that these matrices describe coord. transforms

for positive rotations of the coord. system.

z

1
0 cosa
0 -siha cosa

cosp 0 -sinp
0 1 0
cosf3

sinff 0

0 0

sin o

cosy siny 0
—siny cosy O
0 0 1
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3D Coordinate Transformation Il

By multiplying the 3 matrices R, R, and R_one gets

cos cosy cos Bsiny —sin 8
R=| sinasinfcosy—cosasiny sinasinfsiny+cosacosy sinacosf3

cosasin fcosy+sinasiny cosasin fsiny —sinacosy cosacos 3

For formula manipulations, one tries to avoid the
trigonometric functions and takes

o " N Note that the coefficients of R are
R=| 1, r, 7, constrained: A rotation matrix is
orthonormal:
B 1 B

R RT = (unit matrix)
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Example for Coordinate Transformation

Camera coordinate system :
* Displacement by v,

* Rotation by pan angle 5= -30°
* Rotation by nick angle a = 450

¥

Application of: y e
V= R (V-¥,) with R=RR,
and: B
Rx=% 0 V2 2
0 2 V2

1 Boo o
10 3 (&
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Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to
the coordinates of its projection onto an image plane.

Perspective projection is an adequate model for most cameras.

L | _--
i
-
_--
N~
-

scene point v =
image poirif’t =| ¥, J:|7

=

—

N

optical == > z'=optical axis
center
focal length : : .
o / Projection equations:
image plane
gep xf
Z i
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Perspective and Orthographic Projection

Perspective Projektion:
* Projection equations

_xf v _ _
X, = 7 y,= 7 z, = f (f=focal length)
* Nonlinear transformation

* Loss of information
If all objects are far away (z* is large), f/z is approximately constant.
= Orthographic projection:

X, =§x 'y, =85Y Zp=f (s = scaling factor)

— can be viewed as projection with parallel rays + scaling

— has some linear properties, commonly used for formal analysis.
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From Camera Coordinates to
Image Coordinates

Transform may be necessary because
e optical axis may not penetrate image plane at origin of desired coordinate system
e transition to discrete coordinates may require scaling.

n ! !
X, = (xp—xpo)a a, b scaling parameter
" ' ' ! ! Her] i i
y, = (yp_ypo)b X,, ¥, origin of the image coordinate system
Example: fy’
* Image boundaries in camera coordinates: d, ~
X max = €1 X min = €2

y’max - d] y,min - dZ
* Discrete image coordinates:
x'=0..511 y"=0..575

rr
AW

/ !
i . — = = 512 = 576
|:> Transformation parameters: X,=C¢, ¥, d, a e b Y
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Complete Perspective Projection Equations

Combination of 3 transformation steps:
1. Scene coordinates = camera coordinates

2. Projection of camera coordinates into image plane

3. Camera coordinates = image coordinates
X = _§(cos(/3)cos(y)(x—x0)+cos(/3)sin(y)(y—y0)+sin([3’)(z—zo))—xpo]a

(=sin(a)sin(f)cos(y) - cos(a)sin(y))(x - x,)
V= 1 + (=sin(a)sin(B)sin(y) +cos(@)cos(Y)(y-,) |-, [b
+ sin(a)cos(B)(z-z,)

(=cos(a)sin(f)cos(y) +sin(a)sin(y))(x - x, )
with: Z'= |+ (-cos(a)sin(B)sin(y) - sin(a)cos(y))(y - y,)

+ cos(a)cos(f)(z-z,)
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Homogeneous Coordinates |

4D notation for 3D coordinates which allows to express nonlinear 3D
transformations as linear 4D transformations.

* Normal (3D): v = R _.(V-V,)
* Homogeneous coordinates: v'=R,_ 4T4x4v— A,
STRTIRAT 0 100 X
R T = Hhi Ty Ty 0 0 10 ~Vo
4x4™ 4x4
B T B 0 0 0 1 ~Zy
0 0 0 1 0 0 0 1

Transition to homogeneous coordinates:

T
v = [xyz] —4&= (174) =[wx wy wz w] w # 0 is arbitrary constant
Return to normal coordinates:

(i) Divide components 1 to 3 by 4th component

(i) Omit 4th component
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Homogeneous Coordinates I

Perspective Projection in homogeous coordinates:

I 0 0 O wx wx
» . . 01 0 O N wy : A M wy
v ,= P, WithP = 00 1 0 and v, = 7 gives: v, =| "
0 0 % 0 W %
[ T
xf
. : : { Compare with
Return to normal coordinates gives: v =| & SIS
P 7 earlier slide!
J
Transformation from camera- to image coordinates:
a 0 0 -xa wx, wa(x, —x;)
‘7;,4= B4x4‘71:,4With B, = 0 0 0 —xb and ‘7;,4= %7 gives: ‘7;,4= waly, =)
001 0 0 0
000 1 | " w
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Homogeneous Coordinates IlI

Perspective projection can be completely described in terms of a
linear transformation in homogeneous coordinates:

=" o
V, i B, PRy T4V,

B, P

4x4

R,.T,., may be combined into a single 4x4-Matrix C :

4x4

=" —
Vi C4x4v4

In the literature the parameters of these equations may vary
because of different choices of coordinate systems, different
order of translation and rotation, different camera models, etc.
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Inverse Perspective Equations

Which points in a scene correspond A - X -
to a point in the image?

yp z

Each image point defines a projection ray as the locus of possibl_e scene
points (for simplicity in camera coordinates):

-/

v — \7)’L= )W; (A: free parameter) : \T//J
- %
AV A
. 1 Ursprun p
V=V, +R' AV p@/

Result: 3 equations with the 4 unknowns x, y, z, 4 and camera
parameters R and v,

Applications of inverse perspective mapping for e.g.
— distance measurements
— binocular stereo, motion stereo,
— camera calibration

29.10.15 University of Hamburg, Dept. Informatics 14
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Binocular Stereo |

71, [, Camera positions (optical centers)
b Stereo base (baseline)

0,,0, Camera orientations (unit vectors)
f., f, Focal lengths

V Scene points

<Y
N}

i, Projection rays of scene point (unit vectors)

29.10.15 University of Hamburg, Dept. Informatics

g



IP1 — Lecture 5: Perspective Transformations and Interpolation

Binocular Stereo Il

Determine the distance to Vv by measuring iil and ﬁz
Formally: au =b+pu, = v=oau+l

o.and 3 are overconstrained by the vector equation. In practice,

measurements are inexact, no exact solution exists (rays do not intersect).

Better approach: Solve for the point of closest approximation of both rays:

2

‘7=O‘0ﬁ1+(i+ﬁ0ﬁ2)+z :> minimize: ‘
i +(B+ oy )| = ey + (B + o)) (exii +(5 + o)

S5 (o) (o5 ) = (548 -5+

(5+/30ﬁ2)

Minimization: ‘

=21 (aoﬁl - (l; + /J’OL?Z))

=2 (- ii'b - Byt ) = 0

29.10.15 University of Hamburg, Dept. Informatics
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Binocular Stereo Il

( _ulb ﬁoﬁlT%) 0 = O!O—ulb+[3’0ﬁlTﬁ2 (1)

i(aoﬁl +(5+ ﬁoaz))T (et +(B + ) = =i (et~ (B + o)) - (ctts ~ (B + o))

0
-2 (aoﬁl - (b+ By
= -2 ety iy~ i, b - B,

2 (i) =i b= By ) =0 = By =—ii'b+ayi i, (2)

Insert (2) into (1) gives:

T

2

29.10.15 University of Hamburg, Dept. Informatics
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Distance in Digital Images

Intuitive concepts of continuous images do not always carry over to digital
images.

Several methods for measuring distance between pixels:

Eucledian distance

costly computation of square root,

DE ((1, /). (h,k)) = \/(l - h)2 +(J - k)2 can be avoided for distance comparisons

City-block distance

K _|;_ . number of horizontal and vertical stepsin a
D,(@.)).(h.%)) = |l h| ¥ |J k| rectangular grid

Chessboard distance
o . . number of steps in a rectangular grid if diagonal
D ((1,7),(h,k)) = maX{|l —h|,|j- k|} steps are allowed (number of moves of a king

on a chessboard)

9
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Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based on
adjacency (or neighbourhood):

Pixels are 4-neighbours if _
.. . all 4-neighbours of
their distanceis D, =1 ;
center pixel
Pixels are 8-neighbours if T all 8-neighbours of
their distance is Dg = 1 center pixel

A path from pixel P to pixel Q is a sequence of pixels beginning at Q and
ending at P, where consecutive pixels are neighbours.

In a set of pixels, two pixels P and Q are connected, if there is a path between
P and Q with pixels belonging to the set.

A region is a set of pixels where each pair of pixels is connected.

29.10.15 University of Hamburg, Dept. Informatics 19
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Closed Curve Paradoxon

line 1

A similar paradoxon
arises if 4-pixel
neighbourhoods are
used!

line 2

Solid lines if 8-pixel
neighbourhood is used!

Line 2 does not intersect
line 1 although it crosses
from the outside to the
inside!

29.10.15
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Geometric Transformations

Various applications:
— change of view point
— elimination of geometric distortions from image capturing

— registration of corresponding images
— artificial distortions, Computer Graphics applications

Step 1: Determine mapping T(x, y) from old to new coordinate system
Step 2: Compute new coordinates (x’, y') for (x, y)

Step 3: Interpolate greyvalues at grid positions from greyvalues at
transformed positions

1 =98

----------------- EEESE_ SRR ® Py greyvalue must be interpolated!

3

29.10.15 University of Hamburg, Dept. Informatics 21



IP1 — Lecture 5: Perspective Transformations and Interpolation

Polynomial Coordinate Transformations

General format of transformation:

m m—i m m—i
/ ik / ik
¥'= 2 D'y Y= 2 2 by
i=0 k=0 i=0 k=0

Assume polynomial mapping between (x, y) and (x’, y’) of degree m
Determine corresponding points

a) Solve linear equations for a;, b, (i, k =1 ... m)

b) Minimize mean square error (MSE) for point correspondences

Approximation by biquadratic transformation:
X'= Ay +a,0X +ay,y+a,xy + azox2 + a02y2

y'= by, +b,yx + by y+ b, xy+ b,y x* + b,y at least 6 corresponding

pairs needed

Approximation by affine transformation:
‘ —

X =0y T4 pX+dy, Y at least 3 corresponding

v'=by +byx+byy pairs needed

29.10.15 University of Hamburg, Dept. Informatics
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Translation, Rotation, Scaling, Skewing
* Translation by vector t

Lt
, V= . and t=
y I,

* Rotation of image coordinates by angle a:

!

Pl=v+T with v'=|

y

— - . cosa SIino
v'=R v with R=

—SIna  COosd

* Scaling by factor a in x-direction and factor b in y-direction:

> L/

a 0
b

v'=S v with S=

* Skewing by angle 5:
1 tanp
0 1

v'=W v with W=

29.10.15 University of Hamburg, Dept. Informatics
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Example of Geometry Correction

by Scaling

Distortions of electron-tube cameras may be 1 -2 % => more than 5 lines for

TV images

v
v
v
. —

ideal image actual image

Correction procedure may be based on
— fiducial marks engraved into optical system

X X
— atest image with regularly spaced marks y
Ideal mark positions: ' 2 e
X,,=a+mb,y =c+nd with m=0..M-landn=0...N-1 - ) 4 X
Actual mark positions: Y X X
’xi,nn’ yllnn
Determine a, b, ¢, d such that MSE (mean square error) : i
e 4o . o o s a
of deviations is minimized
29.10.15 University of Hamburg, Dept. Informatics 24
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Minimizing the MSE

Minimize E = K = Xon). + Vo = Vo)’

Special case M=N=2:
g—— > Yy @eM-1-3m)x,, P
MN(M +1) &4 = A 1)
6 ' / ’ ! /
=MN(M2_1)EE(2m—M+1)xmn b=1(xl,—x\ +x],—x),)
o) C C=%(y(l)o+y(l)1)
= 2N -1-3n)y' ' ' ' '
N 22 " d =£(¥ly = Yoo + ¥ = )

6 :
d= NV D ;;(Zn—NH)ymn
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Principle of Greyvalue Interpolation

Greyvalue interpolation = computation of unknown - .

greyvalues at locations (u’v’) from known greyvalues at . *

locations (x’y’)

Two ways of viewing interpolation in the context of geometric
transformations:

A) Greyvalues at grid locations (x y) in old image are placed at
corresponding locations (x'y’) in new image: g(x'y’) = g(T(x y))

- interpolation in new image

B) Grid locations (u’v’) in new image are transformed into corresponding
locations (u v) in old image: g(u v) = g(T*(u’v’))

- interpolation in old image

We will take view B:
Compute greyvalues between grid from greyvalues at grid locations.
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Nearest Neighbour Greyvalue Interpolation
(xiyj) (Xis J’j)

Assign (x y) to greyvalue of nearest grid location . B
(x y)
(; Vi) (X i) 0 Vi) iy Vier) grid locations X; Vier)  (Xiip Vier)
(x ) location between grid
with X SX <Xy
and Vi<V SV
Each grid location represents the greyvaluesin a .
rectangle centered around this location: j>

Straight lines or edges may appear step-like after
this transformation:

29.10.15 j of Hamburg, Dept. Informatics 27
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Bilinear Greyvalue Interpolation

The greyvalue at location (x y) between 4 grid points (x; y;) (X,.; ¥;) (X; V1)
(X;+; Yj+1) is computed by linear interpolation in both directions:

1
8(x,y) = (X =XV = 1)

Simple idea behind long formula:

1. Compute g,, = linear interpolation of g, and g,
2. Compute g;, = linear interpolation of g; and g,

3. Compute g = linear interpolation of g;, and g;,

The step-like boundary effect is reduced.

But bilear interpolation may blur sharp edges.
29.10.15

{(xm — X))V =&Y+ (X = X))V, — V)&(X,15Y,) +

(X, _x)(y_yj)g(‘xi’yj+1)+(x_xi)(y_yj)g(xi+l’yj+1)}

g1 g12 &2
g
o |
23 234 g41
_——‘JL _______
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Bicubic Interpolation

Each greyvalue at a grid point is taken to represent the center
value of a local bicubic interpolation surface with cross section hs.

1—2|x|2+|x|3 f0r0<|x|sl
hy=1 4-8|x|+5|x|" ~[x[ for I<|x|<2

0 else

\

The greyvalue at an arbitrary point (u v)
(black dot in figure) can be computed by

e four horizontal interpolations to obtain greyvalues at
points (u j-1) ... (u j+2) (red dots), followed by

1

2

A

cross section of
interpolation kernel

o , £ i+l it2
* one vertical interpolation (between red dots) e y
to obtain greyvalue at (u v).
o =
Note: For an image with constant greyvalues g, the ke ’
interpolated greyvalues at all points between the grid / |
lines are also g, Tar] cims
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